This report is based on in-depth interviews with research organizations completed by a scientific review.

It provides to DECISION MAKERS a global understanding of the sector as well as an outlook on its future.

**MARKET ANALYSIS**
- New trends and perspectives brought about the “Omic” sciences
- A step ahead of dietetics?
- Main metabolic profiles
- Perspective for health management through individual regime design

**EXAMPLE OF NUTRIENTS MODULATING GENOME EXPRESSION**
- Vitamins
- Antioxidants
- Micronutrients –trace elements
- PUFAs

**MAIN TOPICS**
- Epigenetics & Gene expression
- Metabolomics is the key?
- Monogenic & Multigenic diseases
- What genomics really means?
- True nutritional needs
- Marketing & ethics?
- Nutrigenomics and communication

**COUNTRIES COVERED**
- North America
- Western Europe
- Asia
- Australia- New Zealand
The relation between alimentation and health is not a new fact; this link is part of human history. All diets ever recommended in the past have always been designed in order to achieve the best and longest life which is considered as the evidence of health.

During the last century, welfare and plenty have spread all over industrial nations where great pathologies induced by deficiencies, yet unfortunately present in developing countries, disappeared. Now, the link between food and health did completely change in developed countries where odd food ratios result in the spreading of the most frequent diseases. Among these, cardiovascular diseases, cancer, diabetes, obesity, nervous diseases...have a huge impact in terms of public health.

Our present alimentation greatly influences the development of these pathologies in different ways:
- according to the composition and amounts of foods consumed,
- through eating habits which consequences are clearly perceptible with unbalanced and not varied diets,
- in association with factors like high body mass and poor physical activity it results in a reduction of the overall longevity.

Beyond its nutritional role, food brings various ingredients which, according to their potential biological activities may be risky or beneficial to health. Unravelling all these mechanisms is a tremendous challenge as our body counts about 30,000 genes, 100,000 different RNA molecules, one million different proteins and thousands metabolites interacting continuously. Deciphering the influence of the numerous nutrients we eat each day on our most intimate biological mechanisms is a big challenge entitled Nutrigenomics / Nutrigenetics.

Food is composed of complex substances which concentration may be high without toxic effects and not composed of specific, well defined molecules like chemically known drugs taken in well defined doses. Medicines are, generally, aimed at a limited number of cellular receptors, but food nutrients, characterised by variable affinities and specificities, act on a very large set of biological targets.
High throughput technologies in the field of nutritional research, collaborative actions and networks are an absolute necessity and in order to accelerate and coordinate successful application of these, various institutions in developed countries have developed programs and organizations to address the impact of nutrition on biological systems in a coordinated effort.

So, in the past ten years, and especially in the past three or five, several new researches have focused fresh attention on epigenetics. Interest has grown and it became clear that understanding epigenetics and epigenomics (the genome-wide distribution of epigenetic changes) will be essential in work related to nutrigenomics and nutrigenetics as well as many other topics like stem cells, cloning, aging, agriculture, etc.

Every human cell contains all genes (information) necessary to the set up of all the parts of the whole body, but only few of them are expressed. Epigenetic modifications act as switches controlling gene expression so that only genes useful to a given kind of cell are really activated. The record of this activity is then transmitted to daughter cells at each new generation, ensuring, for example, that liver cells will divide into new liver cells and so on. Epigenetic processes are natural and essential to many, if not all, organism functions, but if they occur improperly, they may result in adverse health and behavioural effects. Epigenetics also provides a way by which genetic material can take account of variable environmental conditions. As cells develop, their fate depends on the selective use and silencing of genes. This process is controlled by epigenetic factors.
For example, DNA methylation or acetylation of histones (structural proteins of the chromosome) play a role in phenomena where genes are switched on or off. Moreover, recent laboratory studies on inbred mice demonstrated how changes to their diet might influence their offspring. All recent epigenetics findings require further assessment but in the next future this field of science could provide new models for disease etiology and basic mechanisms in toxicology. Yet, researchers are actively conducting follow-up studies assessing many genes and looking at links with breast and skin tumors, kidney degeneration, blood defects, etc.

So, as the conductor directs the players of a symphonic orchestra or as the software with the hardware of a computer, epigenetic factors govern the use of DNA information within each living cell. Understanding these factors could revolutionize developmental biology, and thus affect our most common practices from medicine to agriculture and, in the present case, to our feeding habits.

**OBJECTIVES OF THE STUDY**

- Identify the current trends and stages of research and the research labs involved in specialized nutrition/nutrigenomics.
- Interviews with research labs, food and food ingredient manufacturers in an effort to estimate the possible speed of diffusion of diets based on genotypes
- Also estimate the communications, regulatory and distribution issues that such actors will face while providing some guidelines for implementation.
- Review main factors that will drive the market
- Identify what will be the impact of nutrigenomics on new food products and food ingredients development.
1. Introduction
2. Definitions
2.1 Genes & Genetics:
2.2 Epigenetics:
2.2.1 The Three Main Types of Epigenetics Information
2.2.1.1 Methylation:
2.2.1.2 Genomic Imprinting
2.2.1.3 Histone Modifications
2.2.1.4 RNAs
2.2.1.5 Remarks about Epigenetics
2.3 Nutrigenomics
2.4 Nutrigenetics:
2.5 Transcriptomics:
2.6 Metabiomics:
2.7 Proteomics:
3. Nutrition Genes and Diseases
3.1 Metabolic Hereditary Diseases
3.2 Examples
3.2.1 Lactose Intolerance
3.2.2 Galactosemia
3.2.3 Phenylketonuria
4. Multifactorial Diseases
4.1 An Embedded Complexity
4.2 Interactions between Genetic and Nutrition Factors
4.2.1 Kind of Interactions between Genes and Nutrients
4.2.2 Nutrigenetics and Nutrigenomics: Two Approaches of the Same Target
5. Nutrition Effect on Gene Expression and Polymorphism
5.1 Gene Regulation by Nutrients: Influence on Transcription
5.1.1 Transcription Factors, Key Intermediates
5.1.2 Example: Transcriptional Effect of Fatty Acids
5.2 Polymorphism Impact
5.2.1 Polymorphism Description
5.2.2 Example: The Folate Needs
5.3 Prevention Forecast
6. Ethical Considerations
7. Conclusions: Towards a "Tailor-made" Nutrition?
8. Glossary & Abbreviations
SECTION II

Organisations with nutrigenomic research programmes

Presentation 60
Nutrigenomics Laboratories: 60
Multi-Institutional Centres 62
NuGO 63
the Centre of excellence in nutritional genomics At the University of California 65
ILSI and CSIRO 66
International Life Sciences Institute: ILSI of Singapore 66
Information on the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia 67
Current activities 67
The outcomes 68
Nutrigenomics New Zealand 69
Information on different Universities 70
University of Newcastle: 70
Tuft University: 71
The netherlands 73
UK/ireland 73
Germany 74
Denmark 75
Sweden/ finland 76
Finland 77
Ethical concerns/Confidentiality 80
Functional nutrigenomics: The expression fairing of ARNs, Proteins and Metabolites 80
Tissues samples 80
Experimental approaches inspired of pharmacology 82
Is the confidentiality a stake in functional nutrigenomics? 82

Nutrigenetics 83
Association's studies 83
Methodological challenges 83
Sample and data banks: tools for collaboration 85
Standardization and the coordination of the methods of management of the data and samples and the means of guarantying the confidentiality 85
The need to lay down a policy on the operating of a databank with data and samples 86
Towards an ethics of collaborative research? 88
Planned collaboration: an alternative to the biobanks? 88
The framing of collaborations 89
The NuGO case 90
Initiatives of NuGO in ethics of research 90
Questions without answers 90
Frame the use of the common resources 91
Regulatory aspects 92
Introduction and general remark 92
Informed consent 93
General principles 93
Guideline 1: Information during consent process 93
Guideline 2: Content of the consent form for a nutrigenomics study 96
Guideline 3: Informed consent for research involving research volunteers who are not able to consent 97
Guideline 4: Informed consent for biobanks 97
Guideline 5: Extent of informed consent for biobanking 97
Genotype Information 99
General principles 99
Guideline 6: Disclosure of genotype test results 99
Guideline 7: Disclosure of genotype test results on an individual level 100
Market implications
Consumer acceptance of nutrigenomic
First types of products to appear on the market
Populations targeted
Market size
Patents issues
Ethical issues
Communications issues
Modes of distribution
Market segmentation or fragmentation
Manufacturer active on the market
<table>
<thead>
<tr>
<th>PART OF THE STUDY</th>
<th>AVAILABLE IN:</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SECTION I</strong></td>
<td>February 2008</td>
<td>€900</td>
</tr>
<tr>
<td><strong>SECTION II</strong></td>
<td>March 2008</td>
<td>€1,500</td>
</tr>
<tr>
<td><strong>SECTION III &amp; IV</strong></td>
<td>July/August 2008</td>
<td>€2,900</td>
</tr>
<tr>
<td>Complete study</td>
<td>December 2008</td>
<td>€4,900</td>
</tr>
</tbody>
</table>

COMPANY__________________________________________________________________________________
Name_______________________________________Position_______________________________________
________________________________________________________________________________________
_________________________________________________________________________________________
______________________________Date__________________ Signature

www.ubic-consulting.com